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SUMMARY 

The paper presents numerical predictions of a turbulent axisymmetric jet impinging onto a porous plate, based on 
a finite volume method of solving the Navier-Stokes equations for an incompressible air jet with the K--E 
turbulence model. The velocity and pressure terms of the momentum equations are solved by the SIMPLE (semi- 
implicit method for pressure-linked equation) method. In this study, non-uniform staggered grids are used. The 
parameters of interest include the nozzle-to-wall distance and the suction velocity. The results of the present 
calculations are compared with available data reported in the literature. It is found that suction effects reduce the 
boundary layer thickness and increase the velocity gradient near the wall. 
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1. INTRODUCTION 

Turbulent impinging jets are frequently encountered in industry and used for the cooling of high- 
energy electronic components, heat treatment of non-porous metal sheets, cutting, coating and drying 
of paper and surface cleaning. As a consequence, there is a considerable body of experimental and 
analytical data available'-'' which describes the development of the flow within the jet and along the 
surface onto which it impinges. When the surface is porous, the development of the radial wall jet is 
affected. In most practical cases, leakage of fluid through the surface will depend on the local static 
pressure drop across the surface and will therefore vary along the radial direction of the flow. 

Limited data do exist for the case where partial suction is applied to the surface and therefore, as a 
preliminary to looking at a more realistic problem, numerical studies of the effect of a partial uniform 
suction on the flow of a turbulent impinging jet are presented and compared with the only known 
experimental data of Obot et al.'' 

2. MATHEMATICAL FORMULATION 

2.1. Governing equations 

The time-averaged Navier-Stokes equations incorporating the Boussinesq turbulent viscosity 
concept are used in conjunction with the turbulent viscosity defined by the high-Reynolds-number 
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version of the K-E model of turbulence.” The governing equations for axisymmetric flow can 
therefore be written in the general form 

( ::) :r ( 2) a a a 
ax dr  ax - ( r p U $ ) + - ( r p V + )  =- rl-4- +- rl-4- +rS$ ,  

where #J may represent any of the variables (U, K ,  E )  and S,  is the corresponding source term. All the 
governing equations and constants used in this study are summarized in Table I. The two turbulence 
constants C, and C, have been taken to be those recommended by Launder and Spalding” and 
obtained by fitting experimental data for axisymmetric jets to the model. These modified constants are 

C, = 0.09 - 0,04f, C2 = 1.92 - O.O667f, 

where U,, is the velocity in the direction of the symmetry axis of the flow, Y is the radial width of the 
mixing region and AU is the axial direction velocity difference across the width of this region. 

2.2. Boundary conditions 

Because of the elliptic nature of the governing partial differential equations, boundary conditions are 
required along all domain boundaries for all dependent variables. The following boundary conditions 
are specified as shown in Figure 1. 

Boundary I: nozzle exit. A uniform nozzle exit velocity profile is assumed with 

u = u,, K = iU:, E = K:f2 /h -n ,  (3) 
where i is the turbulence intensity ( i  = 0*004), 1 is the length scale constant and r, is the nozzle radius. 

Table I. Summary of equations solved 

Equation 4 r s  % 
Continuity 1 0 0 

x-Momentum 

r-Momentum 

U P e f f  

V Pen 

a p  a au 1 a d V  
- & + & f f ~ )  +; 

PG - P& 
Pt Turbulence energy K P + -  
‘Jk 

Energy dissipation & 

Here pt = C,,pK2/~, pee= p + pt, G = v,[(aU/ar + aV/az)’ + 2(aU/dz)’ + 2(dV/ar)’ + 2(V/r)’], 
C1 = 1.44,ok = 1 . 0 , ~ ~  = 1.3. 
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Figure 1 

Boundary II: entrainment boundary (constant pressure boundary). Along this boundary the 
pressure P is taken as the environmental pressure. The velocity normal to the boundary is then 
calculated by means of the continuity equation. 

Boundary 111: misymmetric axis. Along this axis of symmetry the radial gradients of all properties 
are zero and the radial velocity V642 is zero, i.e. 

v = 0. a& 
dr 

= 0, - dK 
- = 0, - 0, 
dU 
dr dr 

-- (4) 

Boundary IV: outflow boundary. At this boundary a constant static pressure condition is assumed. 

Boundary V: partial porous wall boundary. The wall h c t i o n  method as described by Launder and 
Spalding" for a non-permeable boundary is modified to allow for the effect of suction. For flow over a 
permeable wall the total shear stress can be represented byI2 

Assuming that 

au ( z / p y 2  

? Y -  X Y  

and that the integral of (5) and (6) is compatible with 
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3. NUMERICAL PROCEDURE 

The equations are elliptic and the solution can be obtained numerically by a finite volume scheme as 
shown in Reference 13. The set of difference equations is solved iteratively using a line-by-line 
solution method in conjunction with a tridiagonal matrix form. Based on a grid independence study, a 
40 x 42 mesh is used as shown in Figure 2. The solution is considered to be converged when the 
normalized residual of the algebraic equation is less than a prescribed value of 0.0001. All 
computations were done on a VAX 9420 computer. The programme converged in about 6000 CPU 
seconds. 

4. RESULTS AND DISCUSSION 

The experiments of Obot et a1." consisted of a uniform jet issuing from a 20 mm diameter (0,) 
contoured inlet nozzle impinging concentrically on a 0.97 m diameter plate which was flush with a 
348 mm diameter and 9.5 mm thick porous plate. The permeable test plate was mounted in a suction 
box with its top surface flush with the edges of the suction box. The jet Reynolds number was fixed at 
8 x lo4, i.e. corresponding to a nozzle exit average velocity of 60 m s-'. The ratio H/D, had the 
values 3 ,8  and 12 and the suction velocity varied from 0.0 to 0.25 m s-'. The dimensionless velocity 
profiles UlU, for H = 30, and 80, are compared for various suction velocities and radial positions in 
Figures 3 and 4, which present the height y above the impingement surface in terms of 8112, where 
U(dlI2) = jU, and U, is the maximum velocity. For rlH 2 1-33 the dimensionless velocity profiles 
are independent of both suction velocity and radial location as shown in Figure 3, exhibiting almost the 
same trend as the experimental data. For rlH 5 0.75 (Figure 4) the dimensionless profiles show a 
dependence on location and suction velocity with Vw = 0.0 m s-'. It can be seen that the calculation 
is in good agreement with the experimental data except very close to the surface. In this region both the 
experimental hot wire measurements and the numerical methods are prone to error. The calculated 
maximum radial velocity (V,) and wall halfwidth (dl12) were in excellent agreement with the 
experimental data in the well-developed radial wall jet region, but for conditions closer to the axis of 
symmetry errors of up to 18% were recorded as shown in Figure 5. The experiments show that dl12 
varies linearly with r, while the calculations predict effectively the same trend as the experiments. 

A detailed comparison of the radial velocity distributions at r = 80 and 120 mm for H = 120, is 
shown in Figure 6 with suction velocities of Vw= 0-0, 0.175 and 0.25 m s-'. At these suction 
velocities the overall flow structure of the wall jet region is reasonably well predicted. It is obvious that 
the suction effect reduces the momentum boundary layer thickness and increases the velocity gradient 
near the surface. As might be expected, the agreement is much better towards the outer radii. 

Figure 2 
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5 .  CONCLUSIONS 

A computational procedure has been achieved by formulating the differential conservation equations 
governing the flow with the entrainment boundary. The method requires large amounts of computer 
time in order to predict the finer details of the flow with sufficient resolution. It is found that suction 
creates some volume of flow towards the impinging surface, reduces the momentum boundary layer 
thickness and correspondingly increases the velocity gradient near the surface. Certain discrepancies 
between the calculations and the available data may be caused by the isotropic assumption in the eddy 
viscosity/di%sivity model. 

APPENDIX: NOMENCLATURE 

constants used in turbulence models 
nozzle diameter 
function defined by equation (2) 
generation rate of turbulence kinetic energy 
nozzle-to-wall distance 
turbulence intensity 
turbulence kinetic energy 
pressure 
co-ordinate in radial direction 
nozzle radius 
nozzle Reynolds number 
source term of &equation 
mean velocity component in x-direction 
velocity in direction of symmetry axis of flow 
maximum radial velocity of wall region 
nozzle exit velocity 
friction velocity 
mean velocity component in r-direction 
suction velocity 
co-ordinate in jet axial direction 
distance from wall 
radial width of mixing region 

Greek letters 

diffusion coefficient of $-equation 
jet halfwidth for wall jet region 
turbulence energy dissipation rate 
Von Karman constant 
length scale constant 
dynamic viscosity 
effective viscosity 
turbulent dynamic viscosity 
density 
Prandtl number for turbulence kinetic energy 
Prandtl number for energy dissipation rate 
total shear stress 

TW wall shear stress 
4 dependent variables (U, V K and 4) 



648 Y.-T. YANG 

REFERENCES 

1. M. B. Glauert, ‘The wall jet’, 1 Fluid Mech., 1, 625443 (1956). 
2. M. Poreh, Y. G. Tsuei and J. E. Cermak, ‘Investigation of turbulent radial wall jet’, 1 Appl. Mech., 89, 457463 (1967). 
3. S. C. Kacker and J. H. Whitelaw, ‘The turbulence characteristics of two dimensional wall-jet and wall-wake flows’, 1 Appl. 

4. K. H. Ng and D. B. Spalding, ‘Turbulence model for boundary layers near walls’, Phys. Fluids, 15, (1972). 
5.  S. Beltaos and N. Rajaratnam, ‘Plane turbulent impinging jet’, 1 Hydraul. Rex, 11, (1973). 
6. S. Beltaos and N. Rajaratnam, ‘Impinging circular turbulent jets’, ASCE, 1 Hydraul. Div., 100, 1313-1328 (1974). 
7. A. I? Govindan and R. K. Subba, ‘Hydrodynamics of radial wall jets’, 1 Appl. Mech., 41, 518-519 (1974). 
8. N. Rajaratum, Turbulent Jets, Elsevier, Amsterdam, 1976. 
9. R. N. Sharma and S. V. Patankar, ‘Numerical computations of wall jet flow’, Int. 1 Heat Mass Transfer, 25, 1709-1718 

Mech., 38, 239 (1971). 

(1982). \ I  

10. N. T. Obot, W. J. M. Douglas and A. S. Mujumdar, ‘Influence of suction on the developing wall flow of an impinging jet’, 
AIAA 1, 21, 1774-1776 (1983). 

11. B. E. Launder and D. B. Spalding, ‘The numerical computation of turbulent flows’, Comput. Methods Appl. Mech. Eng., 3, 

12. I? Bradshaw, Turbulence, 1976. 
13. S .  V. Patankar, Numerical Heat Transfer and Fluid Flow, McGraw-Hill, New York, 1980. 

269-289 (1 974). 




